Исследование функции внешнего дыхания у больных туберкулезом

fvdsА. Г. Хоменко

Исследование функционального состояния легких является одним из основных направлений функционального обследования больных туберкулезом. Выполняемое на различных этапах развития специфического процесса, оно способствует обнаружению начальных проявлений нарушений дыхательной функции легких, уточнению качественной и количественной характеристики клинически выраженных функциональных нарушений, раскрытию патогенетических механизмов таких расстройств. Результаты указанного исследования широко используются при оценке физической и профессиональной работоспособности, отборе больных для хирургических вмешательств и определения показаний к проведению функционально-восстановительной терапии.

К простым высокоинформативным методам исследования прежде всего следует отнести спирометрию и спирографию, использование которых обязательно для всех противотуберкулезных учреждений. Самого широкого применения заслуживает изучение кривой поток — объем форсированного выдоха, а также газов и кислотно-основного равновесия артериальной и артериализованной капиллярной крови. При проведении углубленного комплексного функционального обследования крайне желательно определение общей емкости легких и ее компонентов, а также общего бронхиального сопротивления. Нередко возникает потребность в исследовании диффузионной способности легких, при наличии показаний ставят фармакологические пробы с бронхорасширяющими и бронхосуживающими средствами, изучают эластичность легких и работу дыхания.

Спирометрия и спирография — наиболее часто применяемые методы исследования функционального состояния легких. Из регистрируемых спирометрических и спирографических показателей основными являются объем форсированного выдоха в 1 с (ОФВ1), жизненная емкость легких (ЖЕЛ) и индекс Тиффно (ОФВ1/ЖЕЛ). Остальные спирометрические и спирографические показатели (максимальная вентиляция, частота дыхания — ЧД, дыхательный объем — ДО, минутный объем дыхания — МОД, потребление кислорода в 1 мин — ПО2, коэффициент использования кислорода — Киот и др.) следует рассматривать как дополнительные.

Применяют спирометры и спирографы открытого и закрытого типов. Среди аппаратов отечественного производства преобладают спирографы закрытого типа с компенсацией и без компенсации потребляемого кислорода (СГ-1М, СГ-2М, «Метатест 1», «Метатест 2» и др.). Спирометрическое и спирографическое исследования проводят в первой половине дня в положении больного сидя, не ранее чем через 1-1,5 ч после еды. Краткий инструктаж непосредственно перед исследованием дает больному представление о сути предстоящей процедуры и дыхательных маневрах, которые ему предстоит выполнить. Подключение к спирометру или спирографу осуществляют с помощью загубника или мундштука. На нос обязательно накладывают зажим. Подключение к аппаратам открытого типа производят без учета положения легких и грудной клетки. Подключение к аппаратам закрытого типа делают на уровне спокойного выдоха.

Спирометрическое и спирографическое исследование в полном объеме начинают с регистрации ЧД, ДО и ПО2, в состоянии покоя в течение 3-5 мин. Затем после перерыва (1-2 мин) с отключением от аппарата определяют ЖЕЛ, ОФВх или кривую форсированного выдоха (ФЖЕЛ) и МВЛ. Каждый из этих показателей регистрируют на менее 3 раз. При регистрации ЧД, ДО и ПО2 обследуемому предлагают дышать спокойно не фиксируя внимания на дыхании.

При регистрации ЖЕЛ по команде больной делает максимально глубоких вдох и максимально полный спокойный выдох. При регистрации ОФВ1 и ФЖЕЛ рекомендуют как можно глубже вдохнуть и после небольшой паузы произвести максимально быстрый и максимально полный выдох, при регистрации МВЛ — дышать как можно чаще и в то же время как можно глубже. Время регистрации МВЛ не должно превышать 10-15 с. Продолжительность интервалов между отдельными измерениями ЖЕЛ, ФЖЕЛ и МВЛ, если больной легко справляется с дыхательными маневрами, не превышает 1 мин. При появлении усталости и одышки, что чаще наблюдается после регистрации MBII, интервалы между отдельными измерениями увеличиваются до 2-3 мин и более.

При сокращенном варианте спирометрии и спирографии последовательность и методика выполнения отдельных измерений те же, что и при расширенном исследовании. Если выполнение маневра ОФВ1, следовательно, определение ОФВ1/ЖЕЛ невозможны, определяют МВЛ и ПСДВ. Использование МВЛ и ПСДВ как показателей вентиляционной способности легких и бронхиальной проходимости полезно также в случаях отсутствия уверенности в правильности выполнения маневра ФЖЕЛ. ОФВ1, ЖЕЛ и МВЛ оценивают по должным величинам, рассчитанным с учетом пола, возраста, роста и площади поверхности тела. Нижней границей нормы ОФВ1, ЖЕЛ и МВЛ следует считать 80% должной величины, нижней границей нормы ОФВ1 в ЖЕЛ — 70%, нижней границей КИО2 — 33,3. Снижение ОФВ1, ЖЕЛ и МВЛ до 50% должной величины квалифицируют как умеренное, снижение до 49-30% как значительное, а до 29% и более — как резкое.

Основанием для заключения о снижении вентиляционной способности легких является уменьшение ОФВ1 и МВЛ относительно должной величины. Падение ОФВ1 в ЖЕЛ интерпретируют как доказательство наличия бронхиальной обструкции, а снижение ЖЕЛ при отсутствии уменьшения ОФВ1/ЖЕЛ(%) — как диагностический признак рестриктивных изменений. Одновременное снижение ЖЕЛ и ОФВ1/ЖЕЛ(%) может быть обусловлено наличием сочетанных обструктивно-рестриктивных нарушений и проявлением выраженной бронхиальной обструкции. В такой ситуации заключение о наличии рестрикции, точное, о развитии смешанной обструктивно-рестриктивной патологии, правомерно при преобладании выраженности снижения ЖЕЛ над выраженностью снижения ОФВ1/ЖЕЛ(%) и одинаковой выраженности падения ЖЕЛ и ОФВ1/ЖЕЛ (%). При меньшей выраженности снижения ЖЕЛ заключение о наличии смешанных обструктивных нарушений недостаточно обосновано. Окончательное заключение формируется с учетом результатов исследования общей емкости легких и ее компонентов.

Исследование скоростных показателей форсированного выдоха в клинической практике способствует выявлению и уточнению степени бронхиальной обструкции. В ходе исследования измеряют средние и мгновенные скорости начальной, средней и конечной частей выдоха. Из регистрируемых функциональных величин чаще других определяют средние максимальные скорости выдоха на уровне 25- 75% и 75-85% ЖЕЛ (МСВ25-75, MCB7S35) и мгновенные пиковая и максимальные скорости выдоха на уровне 75; 50 и 25% ЖЕЛ/ПСВ, МСВ75, МСВ50 и МСВ25.

Средние и мгновенные скорости форсированного выдоха измеряют с помощью малоинерционных спирографов открытого и закрытого типа и пневмотахографов с интеграторами объема. Обязательным требованием к применяемым спирографам является возможность развернутой записи кривой форсированного выдоха со скоростью движения бумаги не менее 1200 мм/с. Пневмотахографы должны быть снабжены малоинерционным записывающим или запоминающим устройством с выходом на цифропечать, осциллоскоп или двухкоординатный самописец. Для автоматизации желательно наличие микропроцессора.

Условия исследования те же, что при спирометрии и спирографии. Нос зажат носовым зажимом. Дыхательный маневр ФЖЕЛ выполняется, как при спирометрии и спирографии. Повторяют его не менее 3 раз. Особое внимание уделяют регистрации показателей начальной и конечной частей форсированного выдоха, значения которых больше, чем показатели средней части форсированного выдоха, зависят от прилагаемого физического усилия.

Для оценки средних скоростей средней и конечной частей форсированного выдоха (МСЗВ25-75, MCBts^s) при применении спирографов закрытого типа могут быть рекомендованы формулы J. Morris и соавт. (1975). При оценке мгновенных скоростей, полученных на аппаратах открытого и закрытого типов, целесообразно использовать показатели R. Knudson и соавт. (1976) для женщин в возрасте 16-20 и старше 20 лет и мужчин в возрасте 16-25 и старше 25 лет. Нижней границей нормы для большинства мгновенных скоростей форсированного выдоха (ПСВ, МСВ75 и МСВ25) у женщин следует считать 50%, а у мужчин — 55% должной величины. Количественная оценка изменений скоростных показателей затруднительна. В качестве временной рабочей схемы снижение до 40% должной величины можно расценивать как небольшое, до 39-20% — как значительное, до 19% и менее — как резкое.

Снижение максимальных скоростей выдоха — объективный признак наличия препятствий току воздуха в бронхах. Этот метод более чувствительный и специфичный, чем тест Тиффно, который в значительной мере утрачивает диагностическую ценность как показатель обструкции в случаях снижения ЖЕЛ и не в состоянии обеспечить диагностику так называемой патологии мелких бронхов.

Заключение об уровне бронхиальной обструкции дают с учетом результатов измерения ОФВ. Снижение ОФВ1, ПСВ и МСВ75 при нормальных значениях MCBso, MCB2S75 позволяет предположить наличие препятствия в верхних дыхательных путях — в трахее и гортани. Уменьшение MCBso и МСВ25-75 при нормальных величинах ОФВ1, ПСВ и МСВ75 свидетельствует о нарушениях, локализующихся дистально от долевых бронхов, а уменьшение МСВ25 и MCB7S-SS при нормальных уровнях CKDBi, ПСВ, МСВ75, МСВ50 и МСВ25-75 — об обструкции мелких бронхов диаметром меньше 2 мм.

Исследование общей емкости легких (ОЕЛ) и ее компонентов, не доступное прямой спирометрии и спирографии, является обязательным элементом комплексного исследования функционального состояния легких. В его задачи входит уточнение типа вентиляционных нарушений. Наибольшую диагностическую ценность представляет определение ОЕЛ, остаточного объема легких (ООЛ), функциональной остаточной емкости (ФОЕ) и близкого к ней по физиологической сущности внутригрудного объема (ВГО). Исследование проводят с помощью конвекционного и барометрического методов. Конвекционные методы подразделяются на открытые и закрытые, при открытых и закрытых определяют ОЕЛ, ООЛ и ФОЕ, при барометрическом — ОЕЛ, ООЛ и ВГО.

Для определения ОЕЛ и ее компонентов конвекционными методами с применением открытой системы нужны азограф (или азотометр), устройства для сбора и измерения объема выдыхаемого воздуха и источник кислорода. При исследовании с использованием закрытой системы применяют регистратор концентрации гелия или другого применяемого индикаторного газа, спирограф с автоматической компенсацией потребляемого кислорода, гелий или другой индикаторный газ. При барометрическом методе измерительным устройством служит плетизмограф тела. Исследование проводят в течение первой половины дня в положении больного сидя не ранее чем через 1,5-2 ч после последнего приема пищи. Подключение к аппарату при конвекционных методах производят с помощью загубника на уровне спокойного выдоха. При общей плетизмографии подключение через загубник осуществляется после стабилизации давления в кабине плетизмографа.

В ходе исследования конвекционным методом с применением открытой системы регистрируют количество азота, вымытого из легких. При исследованиях по закрытой системе измеряют количество гелия или другого индикаторного газа, перешедшего из спирографа в легкие. При общей плетизмографии определяют измерение давления в альвеолах в кабине плетизмографа во время попыток вдоха и выдоха при перекрытой дыхательной трубке. Вымывание азота проводится до падения его концентрации до 2% в выдыхаемом воздухе. Переход индикаторного газа из спирографа в легкие прослеживают до полного уравнения его концентрации в спирографе и легких. Попытки вдоха и выдоха при перекрытой дыхательной трубке плетизмографа повторяют в зависимости от четкости выполнения дыхательных маневров 3-5 раз и более.

Конвекционными методами непосредственно определяют ФОЕ — объем газа в вентилируемых альвеолах в положении спокойного выдоха. Барометрическим методом измеряют ВГО — весь внутригрудной объем газа, включая объем газа невентилируемых и не связанных с атмосферой внутригрудных пространств. Величину ОЕЛ, ФОЕ, ВГО и ООЛ оценивают в основном по должным величинам. Для их расчета могут быть использованы формулы P. Kristufek и соавт. (1979). Учитывают верхнюю и нижнюю границу нормы. Пределами нормальных колебаний ОЕЛ являются 120-80% должной величины, ФОЕ и ВГО — 130-80% и ООЛ — 140-80% должной величины; OOII/OEII — от 30% в возрасте 20 лет до 50% в возрасте 70 лет.

Снижение ОЕЛ в сочетании с нормальной скоростью форсированного выдоха является наиболее надежным критерием рестриктивных нарушений вентиляции. Падение ОЕЛ до 79-60% должной указывает на умеренную степень рестрикции, до 59-40% — на среднюю выраженность рестрикции, до 39% и ниже — на резкую рестрикцию. При сочетанном обструктивно-рестриктивном варианте вентиляционных нарушений снижение ОЕЛ сочетается с уменьшением ОФВх/ЖЕЛ и, главное, с падением средних и мгновенных максимальных скоростей форсированного выдоха. Увеличение ООЛ и ООЛ/ОЕЛ свидетельствует о гиперинфляции легких. Как проявление умеренной гиперинфляции рассматривается увеличение ООЛ до 175% должной величины и отношения ООЛ/ОЕЛ до 50%, как признак значительной гиперинфляции — повышение ООЛ до 176-250% должной величины и ООЛ/ОЕЛ до 51-65%, как показатель резкой гиперинфляции — увеличение ООЛ до 251% должной величины и больше, отношения ООЛ/ОЕЛ до 66% и выше.

Термин «гиперинфляция» не идентичен термину «эмфизема». Возрастание ФОЕ, ВГО и ООЛ может быть проявлением повышенной воздушности легких вследствие обструкции дыхательных путей. В норме ФОЕ и ВГО примерно равны. Преобладание ВГО, измененного барометрическим методом, над ФОЕ, определенного конвекционным способом, документирует развитие распределительных нарушений с наличием плохо вентилируемых зон легких.

Исследование общего сопротивления дыхательных путей, или общего бронхиального сопротивления (Raw), обязательно для квалифицированной оценки функционального состояния бронхиальной системы, точнее, ее первых 8-10 генераций. В процессе исследования, помимо Raw, определяют специфическое сопротивление дыхательных путей (SRaw), представляющее собой произведение Raw на ВГО, и специфическую проводимость дыхательных путей (SGaw), рассчитываемую как частное от деления проводимости дыхательных путей (Gaw) на ВГО. Проводимость дыхательных путей является величиной, обратной R aw.

Исследование проводят в первой половине дня с помощью плетизмографа тела с постоянным объемом или постоянным давлением. Условия выполнения те же, что при барометрическом методе определения ОЕЛ и ее компонентов. Регистрируют петли бронхиального сопротивления, коэффициент пропорциональности изменений альвеолярного давления и давление в кабине плетизмографа. Для устранения влияния тепло- и влагообмена между выдыхаемым воздухом и воздухом внутри кабины на колебания давления в кабине испытуемый во время записи петель бронхиального сопротивления производит возвратное дыхание в дыхательный мешок, содержащий воздух, полностью насыщенный водяными парами и нагретый до 37°С. Запись петель бронхиального сопротивления осуществляется в условиях спокойного дыхания.

Коэффициент пропорциональности изменений альвеолярного дыхания и давления в кабине плетизмографа определяют в конце выдоха по колебаниям ротового давления и давления в кабине при попытках испытуемого произвести вдох и выдох в момент кратковременного перекрытия дыхательной трубки. Результаты оценивают по нормативам, полученным на основании обследования здоровых лиц. У здоровых женщин показатель Rw не превышает 0,32, у здоровых мужчин — 0,29 [Кузнецова В. В., 1980]. Верхней границей нормы SRaw у женщин и мужчин считают 1,0 [Kristufek P. et al., 1982], нижней границей нормы SGaw 0,008 [Кузнецова В. К., 1980].

Повышенное Raw и нормальная МСВ25 указывают на обструкцию преимущественно в области крупных бронхов. Нормальное Raw и сниженная МСВ25 свидетельствуют о нарушениях проходимости бронхов диаметром менее 2 мм. Существенное диагностическое значение имеет анализ формы петли поток-давление. У здоровых лиц петли бронхиального сопротивления узкие. Их положение близко к вертикальному. При развитии бронхиальной обструкции наклон петель к оси давления увеличивается, появляются изогнутости, пересечения, расширения в области 0-потока и булавовидные расширения в области выдоха. Степень наклона петель отражает уровень общего бронхиального сопротивления. Пересечения указывают на неоднородность обструкции. Расширение петли в области 0-потока свидетельствует о наличии зон, не имеющих связи с воздухопроводящими путями. Булавовидные расширения в области выдоха возникают при снижении эластических свойств легких.

Исследование эластичности и механической гомогенности легких и работы дыхания проводят в рамках комплексного клиникофизиологического обследования с целью диагностики эмфиземы легких, пневмосклероза, распознавания начальных проявлений легочных заболеваний и объективизации жалоб больных на одышку. В ходе исследования определяют статическую и динамическую растяжимость легких (Cet, Cdyn), эластическое давление на уровне 100; 90; 80; 70; 60 и 50% ОЕЛ, общую и удельную работу дыхания (Аещ, Ауд).

Для проведения исследования необходимы пневмотахограф с интегратором, дифференциальный манометр для измерения транспульмонального давления, трехканальный или двухкоординатный регистратор. Пневмотахограф и дифференциальный манометр должны обеспечивать изменение широкого диапазона скоростей воздушного потока и перепадов транспульмонального давления. В качестве двухкоординатного регистратора можно применять электронные осциллографы и двухкоординатные самописцы.

Исследование проводят в первой половине дня в положении больного сидя, натощак или не менее чем через 2 ч после еды. Регистрируют изменения объема легких и транспульмонального давления при медленном выдохе из положения максимального вдоха, при спокойном и форсированном дыхании. Изменения объема легких определяют путем интегрирования пневмотахограммы, регистрацию транспульмонального давления — с помощью пищеводного катетера.

К пневмотахографу больного подсоединяют с помощью загубника. Катетер проводят в пищевод через нижний носовой ход. Его нижний конец с тонкостенным латексным баллоном устанавливают в нижней трети пищевода. Катетеризацию выполняют после анестезии слизистой оболочки носа 0,1% раствором дикаина, 1% раствором лидокаина, у детей — 5-10% раствором новокаина. Правильное положение катетера в пищеводе достигается проведением его нижнего конца в желудок (до получения положительного давления на вдохе) с последующим подтягиванием до появления отрицательных значений давления на вдохе и дополнительно от этого уровня еще на 10 см. Катетер к манометру подключают в момент завершения максимального выдоха. Продвижение катетера по пищеводу облегчает проглатывания воды, засасываемой через тонкую трубку длиной 20-25 см.

Дыхательные маневры больной выполняет под команду. Показатели эластических свойств легких исследуют после 3-4 медленных и глубоких вдохов и выдохов во время медленного полного выдоха из положения максимального вдоха. Динамическую растяжимость легких определяют при спокойном произвольном дыхании и при дыхании под метроном с частотой 60 в 1 мин. Общую и удельную работу дыхания исследуют при спокойном дыхании и навязанных больному форсированных режимах вентиляции, интенсивность которых может достигать уровня максимальной вентиляции легких. Для получения истинных значений и исключения возможных артефактов дыхательные маневры целесообразно повторять не менее 3 раз.

Для оценки величины Cst могут быть рекомендованы должные величины Н. Н. Канаева и В. В. Кузнецовой (1976), для интерпретации результатов измерений Pst при различных уровнях воздухонаполнения легких у детей и подростков — должные величины A. Zapletal и соавт. (1976) и у взрослых — должные величины рабочей группы Европейского общества угля и стали (1983). Верхней границей нормы Cst считают 150% должной величины, нижней — 50% должной величины [Кузнецова В. В., 1980]. Результаты измерения Cdyn оценивают путем сопоставления с величиной Cst. У здоровых людей Cdyn составляет не менее 80% C8t. Полученные значения CR и работы дыхания сопоставляют с нормативами, полученными при обследовании здоровых лиц. К вариантам нормы относят величину CR в пределах 0,2-0,8 и удельную работу дыхания, не превышающую 0,04.  Увеличение работы дыхания — объективное доказательство повышения энергетических затрат на осуществление легочной вентиляции. Констатация этого патологического феномена особенно важна в экспертной практике как подтверждение обоснованности жалоб больных на одышку.

Исследование диффузионной способности легких (DL) в клинической практике применяют для выявления одного из основных механизмов нарушения легочного газообмена и для косвенной оценки объема и характера легочного поражения. Исследование проводят в двух вариантах — методом устойчивого состояния (SS) и однократного вдоха (SB). В качестве тест-газа используют окись углерода (СО). Диффузионная способность легких для СО, определенная методом устойчивого состояния (DLCOss) в большей мере, чем диффузная способность легких для СО, определенная методом однократного вдоха (DLCOSB), зависит от состояния распределительной функции легких. Это несколько снижает информативность DLCOss как показателя диффузионной способности альвеолярно-капиллярной мембраны и одновременно повышает чувствительность DLCOss как показателя нарушения внутрилегочного газообмена.
Исследование проводят с помощью диффузиометров, важнейшими составными частями которых являются инфракрасные газоанализаторы СО и система магнитных клапанов для автоматизированного забора проб альвеолярного воздуха.

Исследование проводят в положении больного сидя, в первой половине дня. Больного подключают к аппарату с помощью загубника. При методе устойчивого состояния обследуемый дышит воздухом, содержащим 0,035-0, 045% СО. Через IV2-2 мин от начала дыхания в течение 2-3 мин определяют МОД и концентрацию СО во вдыхаемом и выдыхаемом воздухе, что необходимо для расчета минутного поглощения тест-газа. Исследование завершается забором пробы альвеолярного газа и определением содержания СО. При методе однократного вдоха после максимального выдоха обследуемый делает максимально глубокий вдох газовой смеси, содержащей 0,2-0,3% СО, 10,0-15% гелия, и задерживает дыхание на 10 с. Затем больной делает максимально полный выдох, во время которого берут пробу альвеолярного газа для определения начальной и конечной концентрации СО в альвеолярном воздухе. Начальная концентрация СО устанавливается расчетным путем по разведению гелия в альвеолярном газе.

Для оценки результатов измерения DLCOss могут быть применены должные величины P. Bates и соавт. (1971), для оценки результатов измерения DLCOss и отношения DLCOss/VA — должные величины A, Salborinne (1976). У здоровых людей абсолютные величины DLCOss, DLCOsb и DLCOsb/VA составляют не менее 80% должной величины. DLCOsb/DLCOss в норме составляет 1,3-1,6. Снижение DLCOss указывает на нарушение диффузии газов в легких и распределения вдыхаемого воздуха, a DLCOsb — в основном на нарушение диффузии. Уменьшение DLCOss/VA рассматривают как признак альвеоло-капиллярного блока. Увеличение DLCOsb/DLCOss служит объективным доказательством наличия распределительных нарушений.

Сочетание гиперинфляции легких, снижения DLCOsb и DLCOsb/VA относят к характерным проявлениям эмфиземы легких. Гиперинфляцию без уменьшения DLCOsb и DLCOsb/VA рассматривают как проявление повышенной воздушности легочной ткани без выраженных структурных изменений межальвеолярных перегородок. Снижение DLCOsb при рентгенологически ограниченных легочных процессах свидетельствует о наличии рентгенологически не обнаруживаемых участков патологически измененной легочной ткани.

Исследование газов и кислотно-основного равновесия (КОР) артериальной крови является обязательным элементом комплексного исследования функционального состояния легких. Его результаты имеют большое значение в диагностике дыхательной недостаточности, определении выраженности и патогенетических механизмов последней. На основании результатов исследования газов и КОР крови квалифицированно решают многие вопросы анестезиологического обеспечения торакальных операций, определяют показания и сроки прекращения интенсивной терапии острых проявлений дыхательной недостаточности. Из показателей газового состава артериальной крови наиболее часто регистрируют РаОг и РаСОг. Из показателей КОР ведущая роль принадлежит pH, РаСОг и BE. Насыщение артериальной крови кислородом (Sa02) как показатель легочного газообмена по чувствительности значительно уступает РаОг. Истинный бикарбонат крови (SB), буферные основания (ВВ) и общее содержание СОг (ТСОг) мало что добавляют к оценке КОР по pH, РаСОг и BE.

Для исследования РаОг, РаСОг, pH, BE и других показателей газов и КОР крови применяют микроанализаторы крови с прямым измерением РаОг комбинированным платино-серебряным электродом Кларка, РаСОг — комбинированным стеклянно-серебряным электродом Северинхауза. Из отечественных аппаратов могут быть рекомендованы АКОР-1 и АКОР-2. Из зарубежных образцов хорошо себя зарекомендовали микроанализаторы фирмы «Радиометр» (Дания) и «AVI» (Швейцария). Для определения Sa02 используют абсолютные и относительные оксигемометры (оксиметры), монометрические аппараты Ван-Слайка или определяют БаОг расчетным путем и с помощью номограмм по результатам измерения РаОг, pH крови и температуры тела.

Для характеристики газов и КОР артериальной крови исследуют пробы артериальной и артериализованной капиллярной крови. Для получения артериальной крови пунктируют локтевую, лучевую или бедренную артерии. Оптимальным местом забора артериализованной капиллярной крови является гиперемированная мочка уха. Гиперемия достигается механическим воздействием (массированием) или втиранием мазей, вызывающих местную гиперемию. При невозможности взятия артериализованной капиллярной крови из мочки уха кровь получают из пальца предварительно прогретой при 40-45°С руки.

Артеризованная капиллярная кровь из пальца отличается от артериальной более низким уровнем РаОг. При заборе капиллярной крови из прокола (надреза) кровь должна вытекать самопроизвольно. Надавливание увеличивает примесь венозной крови. В капиллярах не должно быть пузырьков воздуха, наличие которых снижает точность измерений. Анализ крови лучше всего проводить сразу после ее забора или в течение ближайших 10-15 мин после забора. Даже при 10-15-минутной задержке исследования нужно предпринять меры по предотвращению контакта крови с атмосферным воздухом, «запаяв» капилляр индифферентной смазкой или надев (натянув) на капилляр тонкую резиновую ленту, вырезанную из тонкой резиновой перчатки.

Более длительное хранение крови до исследования допустимо только в холодильнике при 0-4°С, длительность хранения не должна превышать 3-4 ч. Для оценки РаОг при исследовании проб артериальной крови могут быть использованы должные величины К. Mellemgarrd (1966), при исследовании капиллярной крови — должные величины W. Petro и соавт. (1975): РаОг артериальной крови — 104,2-0,27 В, РаОг артериализованной капиллярной крови — 94,2-0,27 В. Допустимым упрощением является использование фиксированных нижних границ нормы РаОг: у лиц в возрасте до 40 лет — 80 мм рт. ст. (10,7 кПа), старше 40 лет — 75 мм рт. ст. (10,0 кПа). Для определения выраженности артериальной гипоксемии в клинической практике удобна классификация P. Kristufek и К. Slavkovska (1982): снижение РаОг до 60 мм рт. ст. (8,0 кПа) расценивается как проявление умеренной гипоксемии, до 59-50 мм рт. ст. (7,9-6,7 кПа) — как значительная гипоксемия и более 50 мм рт. ст. (6,7 кПа) — как резко выраженная гипоксемия. Гиперкапния диагностируется, когда РаСОг превышает 45 мм рт. ст. (6,0 кПа), гипокапния — при РаСОг меньше 35 мм рт. ст. (4,7 кПа).

Выявление гипоксемии при дыхании воздухом и ее ликвидация при переводе на дыхание кислородом указывают на относительное шунтирования венозной крови. Сохранение гипоксемии при дыхании кислородом — объективное доказательство наличия абсолютного шунта. Обнаружение артериальной гиперкапнии является наиболее достоверным признаком несостоятельности легочной вентиляции в виде тотальной гиповентиляции легочных альвеол.
Встречающиеся в клинике нарушения КОР достаточно хорошо документируется изменениями трех основных показателей КОР — pH, Расс>2 и BE. Снижение pH, выходящее за нижнюю границу нормы (рН< 7,34), свидетельствует о развитии скомпенсированного алкалоза.

Если смещение pH в сторону понижения и повышения происходит в пределах нормальных колебаний, выявляемые изменения рассматриваются как компенсированные. Дыхательный ацидоз диагностируют, если РаСОг больше 45 мм рт. ст. (6,0 кПа), дыхательный алкалоз — при снижении РаССЬ до 34 мм рт. ст. (4,5 кПа) и более. Показателем метаболического ацидоза служит уменьшение BE, показателем метаболического алкалоза — увеличение BE. За границу нормы BE принимают верхнюю: +2,5, нижнюю — 2,5. При разграничении первичных (причинных) и вторичных (компенсаторных) сдвигов учитывают клиническую картину заболевания и выраженность наблюдаемых изменений. Первичные (причинные) сдвиги выражены больше, чем ответная компенсаторная реакция.

1996 г

Метки
Bactec АБП Абсцесс Аллергия Альвеолиты Анализы БЦЖ Беременность Биопсия Бронхи Бронхит Бронхоаденит Бронхоблокация Бронхоскопия Бронхоэктазы Брюшина ВИЧ Вакцинация Витамины Гастрит Гепатит Гипертония Глаза Глотка Гортань Дезинфекция Дети Диабет Диспансер Диссеминированный Желудок Закон Зубы Иммунитет Инфильтративный КУМ Кавернозный Казеозная пневмония Кисты Кишечник Классификация Кожа Коллапсотерапия Кости Кровь Курение ЛФК Лаборатория Лазер Лимфогрануломатоз Лимфоузлы МБТ МЛУ МСЭ Менингит Микобактериоз Микоз Микроскопия Миндалины Мокрота Мониторинг Моча Мочеполовой Наркомания Нервы и психика Обследование Озонирование Опухоль Очаг Очаговый ПТК ПЦР Паротит Патогенетические Первичный Перикардит Печень Питание Пищевод Плазмаферез Плеврит Пневмокониозы Пневмония Побочные Поджелудочная Пожилые Позвоночник Посев Почки Профилактика Пьянство Рак Режимы лечения Рентген Рот Санаторий Санбюллетень Саркоидоз Сердце Симптомы Стационар Суставы Трахея Туб. интоксикация Туберкулома Устойчивость ФВД Фиброзно-кавернозный ХНЗЛ Химиотерапия Хирургия ЦНС Цирротический Шок ЭКГ Эмпиема Эндоскопия Язва