Микробиологическая диагностика туберкулеза и микобактериозов

micobacterА. Г. Хоменко

Выявление микобактерий туберкулеза в различном патологическом материале от больных имеет решающее значение для постановки диагноза туберкулезной инфекции.

Именно обнаружение возбудителя туберкулеза является основным и бесспорным критерием, свидетельствующим о специфической природе заболевания. Обнаружение микобактерий имеет решающее значение не только для диагностики туберкулеза, оно чрезвычайно важно при прогнозировании течения процесса, выборе рациональной схемы лечения и правильной оценке его эффективности.

Вследствие широкого применения химиотерапевтических препаратов в последние десятилетия отмечаются существенные изменения многих свойств микобактерий туберкулеза: морфологии самого возбудителя и его колоний на питательных средах, тинкториальных свойств, лекарственной чувствительности, вирулентности для определенных видов животных.

В то же время существенно расширились знания о разнообразных формах существования возбудителя («видимые, но не растущие», L-трасформированные, ультрамелкие авизуальные) и их патогенетической роли; увеличился удельный вес микобактериозов, вызываемых нетуберкулезными (атипичными, оппортунистическими, анонимными) кислотоустойчивыми микробактериями. Это значительно затрудняет и усложняет микробиологическую диагностику туберкулеза и требует комплексного подхода к оценке ее результатов.

Микобактерии туберкулеза — тонкие, прямые или слегка изогнутые палочки длиной 1 -10 (чаще 1-4) мкм, шириной 0,2-0,6 мкм, гомогенные или зернистые с незначительно закругленными концами. Они неподвижны, не образуют эндоспор, конидий и капсул. Морфология и размеры бактериальных клеток подвержены значительным колебаниям и во многом зависят от возраста микроорганизма и особенно от условий его существования и состава питательной среды.

Микобактерии характеризуются выраженным многообразием форм существования, большим полиморфизмом и широким диапазоном изменчивости биологических свойств (плеоморфизмом). Описаны многочисленные морфологические варианты микобактерий: гигантские формы с колбовидно утолщенными разветвлениями, нитевидные, мицелиеподобные и булавовидные, дифтероидные и антимикотические формы. На основании указанного морфологического многообразия в современной микробиологической классификации признана установленной филогенетическая связь возбудителя туберкулеза с лучистыми грибами, что получило отражение в названии вида, рода и семейства — микобактерии.

Учитывая, что возбудитель туберкулеза является неспороносным, имеет палочковидную форму и принадлежит к низшим грибам, VI Всесоюзный съезд фтизиатров рекомендовал придерживаться термина «микобактерии туберкулеза» (mycos — гриб, bacterium — палочка). В связи с этим не следует называть возбудитель туберкулеза бациллой, так как бациллами называются микроорганизмы, способные образовывать споры.

Многочисленными исследованиями доказана способность микобактерий образовывать фильтрующиеся формы, «видимые, но не растущие» формы с ослабленной жизнеспособностью, некислотоустойчивые формы. Однако биологическая и патогенетическая роль этих форм окончательно не выяснена. Получено много новых данных о дефектных по клеточной стенке L-формах микобактерий, описаны их биологические свойства и изучена патогенетическая роль при различных клинических проявлениях процесса и в эксперименте [Хоменко А. Г., Дорожкова И. Р., Земскова 3. С., Карачунский М. А., 1968-1990].

Наряду с изменчивостью морфологии микобактериям туберкулеза свойственна широкая изменчивость и других признаков, в частности весьма характерного для них признака кислотоустойчивости. Кислотоустойчивость слагается из двух свойств: плохого восприятия окраски и ее сохранения при обесцвечивающем действии кислот, оснований и спиртов. Это характерная особенность всех видов микобактерий, за которую они получили название кислото-, спирто- и щелочеустойчивых. Данное свойство имеет первостепенное значение для микобактерий, так как на нем основаны практически все методы бактериоскопического и культурального выявления и идентификации микроорганизма.

Кислотоустойчивость обусловлена высоким содержанием в микробной клетке миколовой кислоты, входящей в состав липидных комплексов и находящейся в соединении с высокомолекулярным спиртом — фтиоциролем. Последний является составной частью восковых субстанций микобактерии. Кислотоустойчивость выявляется с помощью только специальных методов окраски, основным из которых является метод Циля — Нильсена. При окраске по Цилю — Нильсену кислотоустойчивые микробактерии туберкулеза выглядят ярко-красными на синем фоне препарата.

В результате воздействия неблагоприятных условий существования, а также ряда лекарственных веществ и химиотерапевтических средств микобактерий могут полностью или частично утрачивать свойство кислотоустойчивости. Это ведет к образованию смешанной, состоящей из кислото- и некислотоустойчивых особей или полностью некислотоустойчивой популяции. Такие тинкториально измененные микобактерии не обнаруживаются обычными бактериоскопическими методами (при окраске мазков по Цилю — Нильсену), но выявляются другими специальными способами. Поэтому на современном этапе вопрос о прекращении бактериовыделения у больных туберкулезом, леченных противотуберкулезными препаратами, должен решаться только на основании данных, полученных комплексными бактериоскопическими и бактериологическими методами.

Ранее род Mycobacterium формально подразделялся на подроды и типы, однако согласно последним таксономическим исследованиям и заключению Международной рабочей группы по таксономии микобактерий, род Mycobacterium в практических целях подразделяется на 3 большие группы: I — медленно растущие, II — быстро растущие и III — организмы, предъявляющие особые требования к питательным средам, но не культивирующиеся in vitro [Runyon Е. Н. et ai., 1974; Runyon E. H., 1987].

К I группе относятся микобактерии, которые при оптимальных условиях питания и температуры дают на плотных средах рост макроскопически видимых колоний через 7 дней и более. К этой группе относятся виды Mycobacterium tuberculosis, М. bovis, М. africanum, М. microti, а также ряд видов медленно растущих микобактерий, которые классифицируются как нетуберкулезные: М. kansasii, М. marinum, М. simiae, М. gastri и др. Ко II группе относятся микобактерии, дающие на плотных средах рост видимых невооруженным глазом колоний в течение менее 7 дней. К ним относятся виды М. phlei, М. vaccae, М. diernhoferi, М. smegmatis, М. fortuitum и др. К III группе относятся не растущие на питательных средах возбудители проказы М. leprae, М. lepraemurium, М. haemophilum.

Основными методами лабораторной диагностики туберкулеза являются классические микробиологические методы: бактериоскопия; культуральное исследование, или посев; биологичная проба на чувствительных к туберкулезной инфекции лабораторных животных. Каждый из указанных методов имеет определенные достоинства и недостатки, что позволяет в каждом конкретном случае дифференцированно подходить к их применению.

Сбор материала для исследования. Соблюдение правил сбора, хранения и транспортировки диагностического материала имеет очень важное значение, так как от этого зависит не только достоверность получаемых результатов, но и эпидемиологическая безопасность окружающих.

Материал для исследования на наличие микобактерий туберкулеза собирают в стерильные контейнеры (стеклянные банки) с плотно завинчивающимися крышками. Применение герметизированных контейнеров преследует двоякую цель: предотвращение просачивания содержимого и загрязнения окружающей больного среды чрезвычайно стойкими к физическим воздействиям микобактериям и изоляцию сохраняющегося в контейнере исследуемого материала от широко распространенных вегетирующих в окружающей среде кислотоустойчивых бактерий.

Для исследования может быть использован разнообразный патологический материал: мокрота, аспират, содержимое бронхов и другие материалы, получаемые при бронхоскопическом исследовании, промывные воды бронхов и желудка, экссудаты, гной, отделяемое ран, спинномозговая жидкость, кровь, моча, операционный материал, смывы с предметов, органы экспериментальных животных.

У больных с легочными формами процесса объектом исследования чаще служит мокрота. Сбор мокроты — весьма ответственный этап диагностической процедуры, от четкого проведения которого во многом зависит результат исследования. Кроме того, в момент откашливания мокроты создается очень высокий риск воздушно-капельного распространения инфекции. В связи с этим желательно, чтобы сбор мокроты производился по возможности в отдалении от других людей — на открытом воздухе или в отдельной, хорошо вентилируемой комнате. Обычно у больных, выделяющих мокроту в достаточном количестве, для исследования собирают утреннюю порцию. Если больной выделяет мало мокроты, ее следует собирать в течение суток, при этом обязательно собранный материал хранить в холодильнике. Если исследование производится на фоне лечения, за 2 сут до сбора мокроты прием противотуберкулезных препаратов отменяется.

Согласно рекомендациям, разработанным Международным союзом по борьбе с туберкулезом (1976), сбор мокроты должен производиться в присутствии и при непосредственном участии среднего медицинского персонала. При этом лицам, ответственным за сбор мокроты, следует руководствоваться следующими правилами:

  1. Объяснить больному причины исследования и необходимость откашливать содержимое глубоких отделов дыхательных путей, а не собирать в контейнер слюну или носоглоточную слизь. Необходимо также предупредить больного, что он должен предварительно почистить зубы и прополоскать полость рта кипяченой водой, что позволяет механически удалить основную часть микрофлоры, вегетирующей в ротовой полости.
  2. Присутствующий при сборе мокроты медицинский работник должен открыть стерильный контейнер, снять с него крышку и передать больному только донную часть контейнера.
  3. Стоя позади больного, следует рекомендовать ему держать контейнер как можно ближе к губам и сразу же сплевывать в него мокроту по мере ее откашливания.
  4. По завершении сбора мокроты медицинский работник должен оценить ее количество и качество; контейнер с порцией мокроты достаточного объема (не менее 3-5 мл), содержащей уплотненные или гнойные комочки без слюны, тщательно закрывают завинчивающейся крышкой, маркируют и помещают в специальный ящик для транспортировки в лабораторию.

В том случае, если больному не удается сразу выделить необходимое количество мокроты, следует ободрить его и посоветовать сделать повторные кашлевые попытки, так как многие больные не могут сразу в течение нескольких минут выделить мокроту из глубоких отделов дыхательного тракта. В случае, если и отсроченная попытка получить мокроту оказывается неудачной, необходимо удалить контейнер и подвергнуть его обеззараживанию; вымыть руки с мылом и выдать больному новый стерильный контейнер для сбора утренней порции мокроты. Предварительно надо убедиться в том, что больной правильно понял все требования и правила сбора мокроты и пользования контейнером, а также проинструктировать больного, что он должен как можно раньше доставить мокроту в лабораторию — немедленно после ее сбора.

Если же больной не выделяет мокроту или выделяет ее только эпизодически и в скудном количестве, то накануне и рано утром в день сбора мокроты больному следует дать отхаркивающее средство или применить раздражающие аэрозольные ингаляции. Последние провоцируют усиление секреции бронхов, кашель и отделение мокроты. Для аэрозольных ингаляций пользуются портативными аэрозольными ингаляторами типа АИ-1. В качестве ингалируемой смеси рекомендуется 15% раствор хлорида натрия в 1% растворе бикарбоната натрия (150 г. NaCl и 10 г. NaHCCb на 1 л дистиллированной воды).

Поскольку ингалируемый раствор вызывает усиленную саливацию еще до появления кашля с мокротой, то больной должен удалить слюну в специально приготовленную посуду с хлорамином и только после этого собрать мокроту для микробиологического исследования. Гиперсекреция бронхиального содержимого у большинства больных наблюдается еще в течение суток после аэрозольной ингаляции, что должно быть использовано с целью получения материала для обнаружения микобактерий туберкулеза. Поэтому больному рекомендуют собрать мокроту для второго исследования в течение суток после ингаляции.

Если при раздражающей ингаляции почему-либо не удается получить мокроту, то используют промывные воды бронхов или желудка. Последний метод применяется преимущественно у детей младшего возраста, которые плохо откашливают мокроту и часто заглатывают ее. Данный метод может оказаться полезным также у больных с подавленным ванилевым рефлексом, у которых не удается получить материал даже при провоцирующих ингаляциях.

Сбор промывных вод бронхов производится врачом-отоларингологом. Промывные воды желудка берут натощак с помощью толстого зонда, предварительно дав больному выпить или введя через зонд 100-150 мл раствора бикарбоната натрия (питьевой соды) в целях нейтрализации кислой реакции желудочного содержимого. Промывные воды желудка должны исследоваться немедленно, чтобы исключить повреждающее воздействие на возбудителя желудочных ферментов.

Более ценным материалом для исследования при отсутствии мокроты являются аспираты из трахеи и бронхов, бронхоальвеолярная лаважая жидкость, а также материалы прицельной катетер- и щеточной биопсии, получаемые при бронхологических исследованиях.

Экссудаты из плевральной полости, отделяемое ран, аспираты и пунктаты из закрытых натечников, гнойных очагов, асцитическая жидкость и другие материалы должны быть взяты у больного с соблюдением всех правил асептики, помещены в стерильную посуду и доставлены в лабораторию. В отношении этих материалов практикуется двоякий подход. В большинстве лабораторий применяется стандартная техника обеззараживания, что подразумевает загрязнение указанных материалов неспецифической гноеродной флорой. Наряду с этим в некоторых лабораториях практикуют предварительные посевы на бульон Хоттингера с 0,5% глюкозы, агаризованную среду Тароцци (0,15%) и кровяной агар для того, чтобы определить сопутствующую флору и, следовательно, необходимость специальной обработки.

Особого методического подхода требует исследование менструальной крови. Наличие в этом материале большого количества протеолитических, фибринолитических и других ферментов требует незамедлительной доставки материала в лабораторию и тщательной его обработки, так как менструальная кровь является весьма благоприятной средой для микробной флоры.

Особого внимания требует сбор мочи. Для исследования используют обычно среднюю порцию утренней мочи, полученной после тщательного туалета наружных половых органов растворами антисептиков (слабый раствор перманганата калия, риванола и пр.). Мочу центрифугируют, осадок используют для микроскопии и обрабатываают 3-5% раствором серной кислоты, но не щелочью. Сбор суточной мочи для бактериологического исследования малорационален. При накоплении мочи в течение суток невозможно сохранить ее стерильность.

Хранение емкости с мочой в холодном месте может привести к выпадению солей, что неблагоприятно отражается на последующей обработке осадка. Кроме того, в моче содержатся бактерицидные продукты, которые могут не только угнетать жизнеспособность микобактерий, но в течение суток даже разрушить микробные клетки. Установлено, что при хранении мочи после сбора более 1 ч число микробных клеток неспецифической микрофлоры увеличивается в несколько раз. Ферменты жизнедеятельности этой флоры могут угнетать рост микобактерий.

И, наконец, при сборе мочи в течение длительного времени следует иметь в виду возможность попадания в нее кислотоустойчивых сапрофитов, что может привести к диагностическим ошибкам. В этом отношении особенно осторожно должны оцениваться результаты исследования мочи, полученной от мужчин, так как в ней могут обнаруживаться Mycobacterium smegmatis и другие атипичные микобактерии, которые ошибочно могут быть приняты за микобактерии туберкулеза.

Объектом исследования могут служить также кусочки тканей, полученных во время операции, или органы экспериментальных животных. Такой материал, взятый стерильно, помещают в ступку, тщательно измельчают с помощью стерильных ножниц, затем растирают пестиком, постепенно добавляя 5-7 мл стерильного изотонического раствора NaCl, а затем обрабатывают 3-5% серной кислотой. Обработка кусочков тканей щелочью не рекомендуется, так как она менее эффективна и вызывает, кроме того, разжижение тканевых структур с образованием густой тянущейся смеси, плохо поддающейся центрифугированию и другим последующим манипуляциям.

Хранение, консервация и транспортировка диагностического материала. В противотуберкулезных учреждениях функционируют специализированные лаборатории, производящие бактериологические исследования. В стационарах стерильные контейнеры с мокротой или другим патологическим материалом доставляются непосредственно в лабораторию. Сбор материала от амбулаторных больных производится, как указано выше, под непосредственным наблюдением среднего медицинского работника. В случае неудачи такого сбора больному выдают стерильную посуду, проводят инструктаж, и на следующий день утром больные доставляют собранный ими за сутки материал в лабораторию.

Если в лечебном учреждении не проводятся исследования для выявления кислотоустойчивых микобактерий, собранный диагностический материал должен централизованно доставляться в лабораторию, где он будет исследоваться. Обычно такая доставка осуществляется 1 или 2 раза в неделю. Следовательно, материал должен накапливаться в течение нескольких дней. Для этого используют биксы или специальные транспортировочные ящики, вмещающие 10-20 контейнеров, которые хранятся в холодильнике.

Во время транспортировки материал должен предохраняться от воздействия прямых солнечных лучей и тепла. Если транспортировка и хранение занимают не более 48 ч, материал можно пересылать без консерванта. В летний период и в районах с теплым климатом необходима консервация, если транспортировка занимает более 24 ч. С этой целью можно применять 2-3% раствор борной кислоты в соотношении 1: 1 или глицерин. В качестве консерванта можно также использовать 10% раствор трехзамещенного фосфата натрия или 0,05-0,1% раствор хлоргексидин биглюконата в соотношении 1 : 1; в этих случаях посев материала производят без последующей обработки. Рост микобактерий может быть получен даже после хранения мокроты с консервантом при 30°С в течение 10-12 дней.

В условиях Крайнего Севера диагностический материал при длительной транспортировке может подвергаться воздействию значительных колебаний температуры. При этом необходимо учитывать, что допускается пересылка материала в замороженном состоянии без консерванта. Это обеспечивает сохранение жизнеспособности микобактерий в течение 8-15 дней, однако ни в коем случае нельзя допускать повторное оттаивание и замораживание материала, которые способствуют снижению жизнеспособности микобактерий.

Режимы и кратность обследования больных. Режимы и кратность лабораторного исследования для выявления микобактерий туберкулеза могут значительно варьировать не только в зависимости от разных подходов и точек зрения клиницистов и бактериологов, но (в большей степени) и от клинического состояния и формы процесса, этапа наблюдения больного и, наконец, целей самого исследования (верификация специфической природы заболевания, определение степени активности процесса, динамическое наблюдение за эффективностью лечения, этапная проверка групп диспансерного наблюдения и др.).

Тем не менее, согласно рекомендациям Международного союза по борьбе с туберкулезом (1976), при первом обращении больного к врачу и подозрении на туберкулезную инфекцию необходимо исследовать не менее 3 порций мокроты: порции, полученной при первом обращении больного в лечебное учреждение; ранней утренней порции мокроты, собранной больным на следующий день в течении первых 1-2 ч после пробуждения и подъема; второй порции, собранной утром того же дня, но позднее — в период доставки в клинику первой утренней порции.

В нашей стране большее распространение получила другая схема, предусматривающая не менее чем 3-кратное в течение 3 последовательных дней исследование мокроты или другого патологического материала. У впервые выявленных больных (особенно с малыми клиническими формами процесса) желательно повысить кратность исследования до 4-6, так как подобная практика существенно увеличивает число положительных результатов. Такой комплекс исследований производится при поступлении больного в стационар или же при взятии на диспансерный учет. В последующем, в процессе лечения микробиологические исследования проводят регулярно, не реже 1-2 раз в месяц с целью определения динамических изменений состава и массивности микобактериальной популяции, степени активности процесса, эффективности лечения и прогностических критериев.

Особенно тщательно следует проводить исследования при решении вопроса об абациллировании больного перед переводом его в III группу диспансерного учета (неактивный туберкулез органов дыхания) и перед снятием с учета. Порядок, сроки и кратность бактериологических обследований лиц, состоящих на учете противотуберкулезных диспансерных учреждений, регламентируются специальными методическими документами и приказами МЗ РФ.

Бактериоскопическое исследование. Оно является одним из основных и наиболее распространенных методов. Преимущества его заключаются в простоте, дешевизне и быстроте получения результатов. Однако возможности метода ограничены. В препарате можно обнаружить единичные микобактерии, если в 1 мл материала содержится не менее 10 000-100 000 бактериальных клеток (предел метода). При меньшем числе клеток бактериоскопия может оказаться недостаточно чувствительной для их выявления.

В таких случаях применяют различные методы «обогащения» или «накопления» микобактерий. Наибольшее распространение из них получил метод флотации, при котором микобактерии извлекают из водной суспензии исследуемого материала с помощью углеводородов или других жидкостей с меньшей, чем у воды, относительной плотностью (ксилол, толуол, бензин, бензол). Этот метод повышает частоту обнаружения микобактерий более чем на 10% по сравнению с обычной прямой бактериоскопией.

Приготовление мазков для бактериоскопического исследования является весьма ответственной процедурой, во многом предопределяющей успех исследования. При этом необходимо иметь в виду, что это одна из самых опасных процедур. Туберкулез распространяется воздушно-капельным путем через мельчайшие капельки размером около 5 мкм, содержащие возбудитель, которые при вдыхании в легких могут достигать альвеол и оседать в них, формируя очаг инфекции. В лабораторной работе усилия должны быть направлены на то, чтобы избежать или свести к минимуму опасность заражения при тех манипуляциях, при выполнении которых наблюдается наибольшая опасность рассеивания потенциально инфекционных аэрозолей.

Основными источниками образования таких аэрозолей в лабораториях являются манипуляции, которые связаны с приготовлением мазков для бактериоскопии: 1) открывание контейнеров с материалом; эта манипуляция особенно опасна, если между наружной стенкой горлышка контейнера и внутренней поверхностью крышки находятся частицы высохшей мокроты или если непосредственно перед открыванием контейнер подвергался встряхиванию; 2) приготовление мазков путем нанесения материала на предметное стекло и распределение его по поверхности стекла; 3) прожигание бактериологических петель, используемых для переноса материала на стекло. При выполнении этих манипуляций следует соблюдать особую осторожность.

Мазки для бактериоскопического исследования готовят из нативной необработанной мокроты. Для этого мокроту переливают в чашку Петри, под дно которой подложена черная бумага. Рядом с чашкой помещают два чистых (ранее не бывших в употреблении) и заранее промаркированных предметных стекла. С помощью двух препаровальных игл, бактериологических петель или хорошо заостренных деревянных палочек (для каждой пробы мокроты — новых) выбирают 5-6 наиболее плотных гнойных комочков мокроты, переносят их на стекло, покрывают сверху вторым стеклом, слегка придавливают и, раздвигая стекла в разные стороны, растирают до получения равномерного тонкого слоя. Мазок должен занимать 2\з- 1\4 стекла. Во время приготовления мазков следует соблюдать максимальную осторожность, чтобы избежать образования брызг и выхода материала за края стекла.

Приготовленные мазки помещают на 15-30 мин на фильтровальную бумагу для просушки при комнатной температуре. Поскольку не всегда удается избежать попадания материала на края стекла, то бумагу, на которой для просушки раскладывают мазки, следует считать зараженной. Высохшие стекла пинцетом или специальными щипцами берут за конец, на котором нанесена маркировка, и 3 раза проводят через пламя спиртовки или газовой горелки (общая продолжительность пребывания мазка в пламени не должна превышать 3-5 с), а затем помещают на чистую бумагу или специальный поднос.

Целесообразным и в плане охраны труда, особенно рекомендуемым является метод, предложенный Hain. Предметные стекла с мазками, расположенные на жестяных подносах, помещают в стерилизатор и прежде всего высушивают при 37°С. Затем температуру повышают до 105°С и спустя 10 мин стерилизатор выключают. Этим достигаются надежное прикрепление мазка к стеклу и гибель микобактерий, как находящихся в материале и по краям стекол, так и попавших на поднос. Температура не должна превышать 105°С, чтобы не изменить тинкториальные свойства микобактерий. В целях большей безопасности мазки из мокроты можно делать из осадка после обработки материала.

Мазки из жидкого патологического материала (бронхоальвеолярные смывы, промывные воды бронхов или желудка, моча, пунктаты из закрытых полостей, экссудаты и др.) готовят из осадка материала, полученного после обработки его кислотой или щелочью с последующим отмыванием либо нейтрализацией и центрифугированием. Высушенные и фиксированные мазки окрашивают. При выборе окраски учитывают метод микроскопии, с помощью которого будет осуществляться бактериоскопическое исследование: обычный световой (масляная иммерсия) или люминесцентный (флюоресцентная микроскопия) микроскоп.

Наиболее употребляемым и распространенным методом окраски для выявления кислотоустойчивых микобактерий является способ Циля — Нильсена. При одновременном воздействии нагревания и сильного протравливающего вещества фенола (карболовой кислоты), на котором готовится основное красящее вещество фуксин, облегчается проникновение анилинового красителя в микробную клетку и особенно в структуры ее клеточной стенки, состоящей из липидов и миколовых кислот. Обычные анилиновые красители не воспринимаются микобактериями, и последние не окрашиваются. Последующее обесцвечивание мазка в 29% растворе серной кислоты или 3% растворе солянокислого спирта приводит к обесцвечиванию всех некислотоустойчивых структур.

Только микобактерии, обладающие выраженной кислото- и спиртоустойчивостью, стойко удерживают краситель и остаются окрашенными в красный цвет. Обесцвеченные элементы мазка докрашивают метиленовым синим. Микобактерии обнаруживаются в препарате в виде тонких, прямых или слегка изогнутых ярко-красных палочек, иногда расположенных под углом в виде римской цифры V, часто кучками или небольшими скоплениями. Нередко в теле палочек или отдельно от них выделяются единичные более темные зерна или их скопления (зернистые формы).

При микроскопии мазков следует учитывать широкий полиморфизм микобактерий туберкулеза, особенно при исследовании материала от больных, получающих противотуберкулезные препараты. В связи с тем что широкое применение химиопрепаратов меняет морфологию микобактерий, в ряде случаев при исследовании препаратов могут обнаруживаться и ветвистые формы неравномерной ширины, и бледноокрашенные палочки, и осколки микобактерий, и отдельные кислотоустойчивые зерна или их скопления.

Кроме того, в мазках из осадка мочи, промывных вод желудка и другого материала наряду с микобактериями туберкулеза могут обнаруживаться и кислотоустойчивые сапрофиты, в частности в моче — микобактерии спермы, которые легко спутать с микробактериями туберкулеза. В сомнительных случаях рекомендуется мазок длительно (45-60 мин) обесцвечивать в солянокислом спирте или жавелевой воде. При таком методе обесцвечивания сапрофиты теряют свою окраску и выглядят в виде палочек голубого цвета (в результате докрашивания мазка после обесцвечивания метиленовым синим).

Правильная микроскопия препаратов является ответственной процедурой и требует высокой квалификации и большого опыта микроскописта, так как на основании результатов микроскопии ставится диагноз, уточняются эффективность лечения и прогноз заболевания.

Микроскопию окрашенных препаратов производят в световом микроскопе с иммерсионным объективом 90 и окуляром 10 (увеличение 900). Желательно использовать бинокулярный микроскоп с объективом 100. На просмотр обычно требуется в среднем около 5 мин. Этого времени достаточно, чтобы просмотреть не менее 100 полей зрения и обнаружить единичные микобактерии.

Согласно рекомендациям Международного союза по борьбе с туберкулезом (1976), просмотр препарата следует начинать в центральной части левого края мазка, постепенно передвигаясь вправо вдоль длинной оси мазка. Подсчитано, что просмотрев последовательно в этом направлении 100 полей зрения, микроскопист продвинется на 2 см. В некоторых случаях бактериоскопическое исследование 100 полей зрения оказывается недостаточным для обоснованного заключения о количестве возбудителей, выделяемых больным. В таких случаях рекомендуется исследовать не менее 300 полей зрения.

В последние годы довольно широкое распространение получил метод люминесцентной микроскопии. Он основан на различии свечения микроскопируемого объекта в ультрафиолетовом или коротковолновом спектре видимого света. В основе применения этого метода для дифференциации микобактерий туберкулеза лежит способность липидов этих бактерий воспринимать люминесцентные красители и затем светиться при облучении ультрафиолетовыми лучами. В зависимости от применяемых красителей микобактерии туберкулеза дают четкое ярко-красное свечение на зеленом фоне или золотисто-желтое — на темно-зеленом фоне.

Этим методом можно исследовать любой материал, кроме мочи, в которой могут быть сапрофиты, трудно дифференцируемые при такой окраске. Последние имеют зеленоватый или апельсиновый оттенок. Наиболее широко распространены методы окраски акридиновым оранжевым по Адамчику и окраски аурамином-родамином.

При микроскопии мазков по люминесцентному методу высокая контрастность микроскопической картины дает возможность проводить исследования при малых увеличениях. При такой микроскопической системе увеличивается одномоментно просматриваемое поле зрения (по сравнению с иммерсионной микроскопией). Это позволяет выявлять единичные микобактерии и делает люминесцентный метод особенно ценным при исследовании олигобациллярного материала. Люминесцентная микроскопия значительно сокращает время, затрачиваемое на нахождение единичных микобактерий туберкулеза, позволяет быстро просмотреть весь препарат и, следовательно, повысить число находок.

Сравнительные исследования одних и тех же препаратов, окрашенных по методу Циля — Нильсена и люминесцентными красителями, показали значительно более высокую информативность люминесцентного метода, которая, по данным различных авторов, колеблется от 9-10 до 19%.

Положительный неколичественный ответ микроскопии обычно дается в том случае, если в препарате обнаруживается не менее 3 микобактерий. Однако в случае положительного результата однозначного ответа «положительный» или «отрицательный» в настоящее время для клинических целей недостаточно. Применяется количественная оценка массивности бактериовыделения.

Количество обнаруженных в мазках микобактерий является весьма важным показателем, отражающим степень заразности больного. В современной химиотерапии легочного туберкулеза количественная оценка бактериовыделения служит одним из методов определения эффективности лечебных мероприятий. Уменьшение в процессе химиотерапии вегетирующей микобактериальной популяции трактуется как хороший прогностический признак, тогда как длительное стабильное бактериовыделение или тенденция к его увеличению рассматривается как неудачи лечения и требует незамедлительной смены лечебной тактики.

Для количественной оценки микобактериальной популяции используют бактериоскопический и культуральный методы. Результативность этих методов близка, но неравнозначна. Быстрота получения информации при применении бактериоскопического метода составляет его неоспоримую ценность по сравнению с культуральным методом. Однако последний более полноценно характеризует микробную популяцию не только с количественной, но и с качественной стороны.

Установлено, что результаты многократных бактериоскопических исследований патологического материала приближаются к результативности метода посева, особенно у больных с хроническими деструктивными формами туберкулеза. Применение двух методов в совокупности позволяет более точно количественно оценить степень бактериовыделения.

В основу применяемых в настоящее время методов количественного учета микобактерий в препарате положен метод, предложенный учениками Коха — Гаффкой и Стинкеным. Этот метод вошел в литературу как метод Гаффки в модификации Стинкена. Собирается мокрота, выделяемая больным за 24 ч. После измерения ее количества мокрота подвергается обработке и засевается на питательные среды с помощью количественного метода, а из осадка, кроме того, приготавливается мазок. Для этого на предметное стекло наносят 0,05 мл осадка мокроты, и это количество распределяют в виде мазка диаметром 15 мм на заранее откалиброванном на стекле участке.

Мазок окрашивают по Цилю — Нильсену и просматривают в микроскопе не менее 100 полей зрения. Число микобактерий в каждом поле зрения записывают в специальной сетке. Затем подсчитывают среднее число микобактерий в одном поле зрения. Японскими авторами установлено, что при диаметре мазка 15 мм и увеличении микроскопа 630 раз (окуляр 7, объектив 90) в таком мазке содержится постоянное число полей зрения, соответствующее 10 000. Для определения числа микобактерий предложена специальная формула Берне (1969). Путем сравнительно несложных расчетов по ней можно определить общее число микобактерий, выделяемых больным с мокротой ежесуточно в зависимости от количества мокроты.

Однако следует признать, что метод Гаффки — Стинкена довольно сложен, требует много времени и большой точности. Поэтому предложены различные модификации этого метода, облегчающие его выполнение и ускоряющие исследование. Так, в Центральном НИИ туберкулеза РАМН разработана комплексная методика количественного определения массивности бактериовыделения (КОМБ), которая предусматривает одновременное использование бактериоскопического и культурального методов.

В схему исследования входит бактериоскопия дозированного мазка из осадка мокроты, окрашенного по Цилю — Нильсену, определение числа микобактерий в 100 полях зрения, посев материала на питательные среды Левенштейна — Йенсена и Финна-II с последующим подсчетом выросших колоний. Массивность микробной популяции при баатериоскопии оценивают по двум степеням: 1) скудное бактериовыделение — в дозированном мазке обнаруживается 1-9 микобактерий в 100 полях зрения; 2) обильное — от 10 до 100 микобактерий в 100 полях зрения.

Существуют и другие схемы оценки массивности бактериовыделения. Международный союз по борьбе с туберкулезом придерживается следующей схемы количественной оценки. Подсчет выявляемых кислотоустойчивых микобактерий производят в пределах до 50 микробных особей при микроскопии. При этом могут наблюдаться следующие варианты:

  • Обнаружено 50 микобактерий менее чем в 100 полях зрения, т.е. раньше, чем микроскопист завершил просмотр одной длины мазка. Запись: более 50 в 1 длине — >50/100 в поле зрения;
  • От 10 до 50 микобактерий обнаружено в 1 длине мазка. Указывается абсолютное число: 36/100 в поле зрения.
  •  От 0 до 10 микобактерий обнаружено в 1 длине мазка. В этом случае необходимо продолжить исследование и просмотреть
  • 3 длины (300 полей зрения). Возможны 3 варианта:
    • обнаружено 50 микобактерий; запись 50/>100 в поле зрения;
    • обнаружено менее 50 микобактерий; указывается их количество: 29/300 в поле зрения;
    • не обнаружено микобактерий; запись: 0/300 в поле зрения.

Можно провести аналогию этих результатов с более привычными
для нас понятиями обильного (массивного), умеренного и скудного бактериовыделения:

  • >50/100 в поле зрения — соответствует обильному,
  • 10-50/100 в поле зрения — умеренному и
  • 50/300 в поле зрения — скудному бактериовыделению.

Клиническое значение определения массивности бактериовыделения не вызывает сомнений. Установлена прямая корреляция между массивностью микобактериальной популяции, частотой развития лекарственной устойчивости микобактерий и объемом деструктивного процесса у больных туберкулезом.

У лиц с хроническими формами туберкулеза легких при ограниченных деструктивных поражениях отмечается менее интенсивное бактериовыделение (у 50% больных наблюдается отсутствие или небольшое число микобактерий в мокроте), более редкое развитие лекарственной устойчивости к противотуберкулезным препаратам и более частое прекращение бактериовыделения в процессе лечения.

При распространенном деструктивном туберкулезе легких большинство больных выделяют массивную бактериальную популяцию, содержащую в 63-78% случаев устойчивых в противотуберкулезным препаратам микобактерий. У этих больных в 2 раза реже наступает прекращение бактериовыделения в результате химиотерапии. Сроки исчезновения микобактерий туберкулеза из мокроты в определенной степени коррелируют с массивностью бактериовыделения до начала химиотерапии.

Отмечено, что положительная бактериологическая динамика, проявляющаяся в резком снижении микобактериальной популяции и полном ее исчезновении из мокроты, несколько опережает рентгеноморфологические признаки инволюции процесса. Именно в этот период на фоне исчезновения типичных бактериальных форм возбудителя наиболее легко и демонстративно выявляются разнообразные качественные изменения микобактерий, проявляющиеся в возникновении различных форм биологической изменчивости микроба.

Следует отметить также, что на фоне интенсивной противотуберкулезной химиотерапии (особенно с включением в состав лечебных комбинаций рифампицина) в последние годы отмечается феномен появления в мазках из разнообразного патологического материала видимых под микроскопом и хорошо окрашивающихся по Цилю — Нильсену микобактерий, которые под влиянием лечебных препаратов на самом деле утратили жизнеспособность и способность размножаться на питательных средах. Этот феномен получил в литературе название «видимые, но нерастущие микобактерии».

Для выявления этих микроорганизмов японские исследователи Murohashi и Yoshida (1957) предложили метод окраски «на живые и мертвые». Метод основан на различной окраске ДНК микробной клетки у живых и погибших микобактерий. В последних она находится в деполимеризованном состоянии и теряет способность окрашиваться некоторыми анилиновыми основными красителями (в частности, метиленовым зеленым), однако воспринимает дополнительную окраску пиронином, сафранином или карболовым фуксином. На окрашенном препарате живые жизнеспособные микобактерии зеленые, а погибшие, не способные к размножению, — красные.

Таким образом, для обнаружения микобактерий имеется несколько бактериоскопических мазков. Они достаточно просты, общедоступны и позволяют получить ответ в максимально короткий срок. Однако они не дают полной уверенности ни при положительном, ни при отрицательном результате бактериоскопии и потому, как правило, сопровождаются более чувствительным и результативным методом исследования — методом посева.

Метод посева, или культуральный метод выявления микобактерий. Этот метод отличается большой чувствительностью и имеет ряд преимуществ перед методом микроскопии. Он позволяет выявить микобактерии туберкулеза при наличии в исследуемом патологическом материале нескольких десятков жизнеспособных особей. Если сопоставить эту цифру с 10 000-100 000 микробных тел, присутствие которых необходимо в 1 мл материала для бактериоскопического выявления, то станет ясна значительно более высокая чувствительность метода посева. Это особенно важно при исследовании материала от впервые выявленных или уже леченных больных, выделяющих малые количества микобактерий.

Очень важным преимуществом метода культурального исследования является возможность получения культуры возбудителя, которая может быть подробно исследована, идентифицирована и изучена в отношении ее лекарственной чувствительности, вирулентности и других свойств. Однако необходимо отметить, что существует ряд факторов, ограничивающих широкое применение метода культивирования, в частности его высокая стоимость, известные ограничения, связанные со сложностью обработки патологического материала, медленным размножением микобактерий туберкулеза и, следовательно, необходимостью долго ждать результатов исследования.

Все это снижает ценность метода, не дает возможности оперативно использовать полученные результаты в клинике и диктует необходимость проведения широкого поиска как более совершенных методов, так и более совершенных питательных сред, которые позволили бы ускорить получение результатов и повысить эффективность и чувствительность метода.

Бактериологическому исследованию подвергается самый разнообразный материал: мокрота, промывные воды бронхов и желудка, экссудаты, отделяемое ран и свищей, моча, спинномозговая жидкость, материалы биопсии и бронхоальвеолярного лаважа, органы экспериментальных животных и патологоанатомический материал. Материал для исследования должен доставляться в лабораторию в стерильной хорошо закрытой посуде.

Перед посевом на питательные среды материал предварительно обрабатывают, что преследует двоякую цель: 1) максимально гомогенизировать материал, подлежащий исследованию, с тем чтобы содержащиеся в нем микобактерии равномерно распределились в его объеме, чем облегчается их выделение; 2) необходимо «подавить» все другие микроорганизмы (гноеродные и гнилостные), содержащиеся в материале исследования, с тем чтобы в дальнейшем они как более быстро растущие не мешали росту микобактерий и не использовали приготовленные для микобактерий питательные вещества среды.

С этой целью для обработки патологического материала перед посевом на питательные среды используют различные реактивы. Это должно обеспечивать гомогенизацию материала, полностью подавлять рост неспецифической гноеродной и гнилостной микрофлоры, которая может находиться в исследуемом материале, и максимально сохранять жизнеспособность присутствующих в материале микобактерий. Перед посевом исследуемый материал нужно сконцентрировать и освободить от сопутствующей гноеродной микрофлоры. Для этого мокроту, экссудаты и другой материал помещают в стерильную склянку с бусами или битым стеклом и обрабатывают щелочью или кислотой. Жидкие материалы предварительно центрифугируют, и дальнейшей обработке подвергают только осадок.

В настоящее время для обработки патологического материала применяют следующие методы и детергенты:

  1. Метод Гона — обработка растворами серной кислоты (2-6%) в зависимости от характера материала и степени его загрязненности неспецифической микрофлорой с последующим центрифугированием и отмыванием.
  2. Метод Петрова — обработка 4% раствором NaOH с последующим центрифугированием и нейтрализацией осадка перед посевом; этот метод удобно использовать при одновременной обработке большого количества посевов. Щелочь растворяет белковые частицы, что способствует быстрой гомогенизации мокроты и других материалов, содержащих гной и слизь, и высвобождению из этих белковых частиц микобактерий туберкулеза.
  3. Обработка 3% раствором серной кислоты в течение 20 мин (10 мин в спокойном состоянии, 10 мин при центрифугировании) с последующим 3-кратным отмыванием осадка стерильным изотоническим раствором.
  4. Обработка 1% раствором серной кислоты после тщательной гомогенизации в течение 18-20 ч при комнатной температуре (метод Б. Я. Циммер).
  5. Обработка 10% раствором трехзамещенного фосфата натрия. Это широко распространенный в нашей стране метод, допускающий длительную экспозицию материала с фосфатом натрия без нарушения жизнеспособности микобактерий, что особенно ценно в тех случаях, когда доставка материала затруднена. Трехзамещенный фосфат натрия хорошо угнетает сопутствующую флору и даже при 2-3-дневном хранении материала не повреждает микобактерии и мало влияет на их способность к росту на питательных средах. Метод можно применять в двух модификациях: с нейтрализацией материала или без нейтрализации. В последнем случае к осадку после центрифугирования добавляют 1 мл жидкой среды Школьниковой и полученную смесь полностью засевают на питательные среды.
  6. При посеве сильно загрязненного материала используют более концентрированные растворы серной кислоты (5%).

Для культивирования микобактерий туберкулеза используют различные питательные среды: плотные, полужидкие, жидкие (синтетические и полусинтетические). Однако ни одна из них не обладает качествами, предъявляемыми к ним современной бактериологической диагностикой туберкулеза. В связи с этим для повышения результативности культурального метода рекомендуется применять посев патологического материала одновременно на несколько (2-3) питательных сред. Для выделения чистых культур микобактерий туберкулеза чаще всего применяют различные по составу плотные питательные среды.

В качестве стандартной среды для первичного выделения возбудителя и определения его лекарственной чувствительности ВОЗ рекомендована среда Левенштейна — Йенсена. Это плотная яичная среда, на которой хороший рост микобактерий туберкулеза получают на 15-25-й день после посева бактериоскопически положительного материала.

В последние годы широкое распространение в нашей стране получила яичная среда II, предложенная Э. Р. Финном (среда Финна-2). Она отличается от среды Левенштейна — Йенсена тем, что вместо L-аспарагина в ней используется глутамат натрия. На этой среде рост микобайтерий туберкулеза появляется на несколько дней раньше, чем на среде Левенштейна — Йенсена. Процент выделения культур на этой среде на 6-8% выше, чем на среде Левенштейна — Йенсена. Для повышения вероятности получения роста микобактерий рекомендуется засевать патологический материал на 2-3 различные по составу питательные среды одновременно.

В настоящее время, кроме безаспарагиновой среды Финна-2, в практику внедряется еще одна безаспарагиновая среда, разработанная В. А. Аникиным. По данным Московского НИИ туберкулеза, применение сред, сбалансирбванных по солевому составу и источникам азотистого питания иначе, чем среда Левенштейна — Йенсена, культуральная диагностика туберкулеза улучшается в среднем на 6,7%. Это особенно важно при таких формах туберкулеза, при которых возбудитель паразитирует в условиях ацидоза и анаэробиоза, в частности, при туберкулезе мочеполовых органов.

Для повышения результативности культурального метода наряду с применением одновременно нескольких различных по составу питательных сред для посева рекомендуется повторное многократное исследование материала, так как в настоящее время отмечается состояние олигобациллярности у большинства больных даже со свежевыявленными деструктивными поражениями в легких. Олигобациллярность проявляется не только малым количеством возбудителей в диагностическом материале, но и транзиторностью, эпизодичностью их выделения. Поэтому часто посев даже на 3 различные питательные среды не обеспечивает полной информации о состоянии бактериовыделения.

Для повышения информативности культурального метода практикуется повторное многократное исследование материала от больных. По данным Центрального НИИ туберкулеза, методика 3-кратного первичного комплексного исследования бактериоскопическими и культуральными методами у впервые выявленных больных деструктивным туберкулезом легких дает дополнительно 3,4% положительных результатов, а у больных хроническим деструктивным туберкулезом, лечившихся до поступления в стационар, — 5,8% по сравнению с данными одноразового исследования.

Однако, по данным ряда авторов, и 3-кратные посевы недостаточны для выявления истинной картины бактериовыделения. Так, установлено, что при обследовании нелечившихся больных максимальный прирост информации о бактериовыделении можно получить при 6-кратных повторных посевах материала, при этом количество положительных результатов возрастает на 36-37% по сравнению с данными 3- кратного посева. У больных после 3-месячного лечения ценность многократного исследования патологического материала методом посева возрастает и при 6-кратном исследовании показатель прироста положительных результатов может достигать 70%, а после 6 мес лечения он возрастает до 82%.

Таким образом, кратность исследования и состав питательных сред имеют важное значение для культуральной диагностики туберкулеза. В связи с тем что в процессе интенсивной химиотерапии происходит повреждение различных метаболических систем микробной клетки, ряд микроорганизмов в микобактериальной популяции утрачивает способность нормально развиваться на питательных средах. Отмечается снижение жизнеспособности микобактерий, что может проявляться отсутствием роста на общепринятых питательных средах, а также возникновением способности расти только на осмотически сбалансированных (полужидкие или даже жидкие) питательных средах.

Так, по данным И. Р. До рожковой, в процессе интенсивной противотуберкулезной химиотерапии часть микобактериальной популяции, утрачивая способность расти на плотных питательных средах, в то же время приобретает свойство расти на полужидких питательных средах, образуя микроколонии в верхнем наиболее аэрируемом участке питательной среды. Эта потребность в повышенной аэрации четко проявляется также при культивировании микобактерий в жидких питательных средах с увеличенной аэрацией, которая достигается при культивировании посевов во вращающемся термостате (Н. М. Макаревич).

После посева и закрытия пробирок материал должен быть распределен по всей поверхности питательной среды, для этого пробирки наклоняют. Пробирки должны находиться в горизонтальном положении в течение 24-48 ч, после чего их следует перевести в вертикальное положение.

Посевы нужно просматривать еженедельно. При этом обязательно регистрируются параметры: а) появление роста — срок появления, начиная со дня посева; б) интенсивность роста — число колоний, этот показатель имеет большое диагностическое и прогностическое значение, особенно если посевы производятся в динамике; в) загрязнение посева посторонней микрофлорой или грибами; г) отсутствие роста.

При первичном посеве бактериоскопически отрицательного материала на плотные среды средняя продолжительность роста составляет 20-46 дней. Отдельные штаммы растут 60 и даже 90 дней. Это заставляет выдерживать посевы в термостате в течение 3 мес, еженедельно проверяя появление роста.

Обычно вирулентные культуры микобактерий туберкулеза растут на плотных питательных средах в виде R-форм колоний различной величины и вида. Колонии сухие, морщинистые, цвета слоновой кости, но в случае диссоциации могут встречаться и влажные, слегка пигментированные колонии, розовато-желтый пигмент которых резко отличается от оранжевого или желтого пигмента сапрофитных или атипичных микобактерий. Последние обычно растут в S-форме. Следует отметить, что на среде Финна-2 колонии микобактерий туберкулеза могут быть более влажными. После курса химиотерапии от больных туберкулезом могут выделяться гладкие колонии с влажным ростом (S-формы). Гладкие колонии характерны также для Mycobacterium bovis, которые также патогенны для человека.

Положительный ответ дают только после микроскопии мазка из выросших колоний, окрашенного по Цилю — Нильсену. В мазках обнаруживаются ярко- и темно-красные палочки, лежащие одиночно или группами, образующие переплетения в виде «войлока» или «кос», часто видны темные зерна, особенно в длительно растущих культурах. В молодых культурах микобактерии туберкулеза (особенно выделенные от больных, длительно леченных химиопрепаратами) часто отличаются большим полиморфизмом, вплоть до появления коротких, почти кокковидных форм.

Интенсивность роста обозначают по 4-балльной системе: + единичные колонии; ++ от 20 до 100 колоний; +++ от 100 до 200 колоний; ++++ несосчитываемое число колоний (сливной рост). В двух последних случаях имеется обильное бактериовыделение, которое является показателем активности процесса и/или неэффективности лечения.

Если морфология колоний или палочек вызывает сомнения в их туберкулезной природе или культуры выделены из материала, который может содержать кислотоустойчивые сапрофиты (моча, гной из ушей и др.), мазки дополнительно обесцвечивают спиртом (в течение 45-60 мин) или жавелевой водой (в течение 1-2 ч). Следует учитывать, что молодые культуры микобактерий туберкулеза могут обесцвечиваться спиртом и жавелевой водой, так как они еще слабо кислотоустойчивы. В таких случаях культуры следует выдержать еще несколько дней (5-10) в термостате и вновь повторить микроскопическое исследование, чтобы убедиться в их кислотоустойчивости.

Авирулентные сапрофитные и атипичные микобактерии обычно грубее, толще, иногда менее интенсивно окрашены и, как правило, не образуют жгутообразных сплетений (корд-фактор отсутствует). Однако некоторые виды атипичных микобактерий (фотохромогенные) могут расти в R-форме. Многие атипичные и сапрофитные микобактерии имеют кислотоустойчивые зерна, весьма сходные с таковыми у вирулентных микобактерий туберкулеза.

В тех случаях, когда выделяются культуры, вызывающие сомнения в плане их принадлежности к микобактериям туберкулеза, их изучают, используя комплекс специальных исследований, позволяющих дифференцировать типичные микобактерии туберкулеза от нетуберкулезных (атипичных) микобактерий и кислотоустойчивых сапрофитов.

Как отмечалось выше, в случае появления на питательных средах роста колоний и установления с помощью микроскопии окрашенных по Цилю — Нильсену мазков факта, что выросшая культура относится к кислотоустойчивым микобактериям, производится количественная оценка результатов посева. С этой целью применяют различные схемы оценки (одна из них приведена выше).

В Центральном НИИ туберкулеза используют количественную оценку бактериовыделения методом посева по 3 степеням:

  1. скудное — на плотных питательных средах вырастает 1-20 колоний во всех пробирках, использованных для данного посева;
  2. умеренное — от 21 до 100 колоний во всех пробирках;
  3. обильное — обнаруживается рост более 100 колоний во всех пробирках.

При лабораторной диагностике туберкулеза недостаточно дать ответ, констатирующий, обнаружены или нет тем или иным методом микобактерии туберкулеза. Для клиники туберкулеза, детального представления о характере микобактериальной популяции и определения прогноза заболевания необходимо изучение различных свойств культур, выделенных от больного: лекарственной чувствительности, ферментативной активности, вирулентности, видовой принадлежности. В некоторых случаях необходимо дифференцировать выделенные культуры и установить характер атипичных культур. Все это обусловливает то разнообразие исследований, которые необходимо проводить при лабораторной диагностике туберкулеза.

Определение лекарственной чувствительности выделенных штаммов микобактерий является необходимым и весьма важным этапом микробиологических исследований. Развитие лекарственной устойчивости обусловлено многими факторами: селекцией устойчивых вариантов в микобактериальной популяции, вегетирующей в организме больного; индукцией противотуберкулезными препаратами или антибиотиками, применяемыми в процессе химиотерапии; передачей эписомного R-фактора чувствительным особям (нехромосомная устойчивость) и др.

Следует отметить, что снижение чувствительности микобактерий туберкулеза отмечается ко всем противотуберкулезным препаратам, однако оно может отличаться по степени, характеру, частоте и скорости появления. Известно, что из патологического материала от больных туберкулезом выделяются неоднородные по лекарственной чувствительности микобактерии: устойчивые к одному лекарственному препарату, или моноустойчивые, варианты с истинной двойной или полиустойчивостью, а также смесь вариантов, устойчивых к различным препаратам.

Определение спектра и степени чувствительности микобактерий туберкулеза к противотуберкулезным препаратам имеет важное значение для тактики химиотерапии больных, контроля за эффективностью лечения и определения прогноза заболевания. Степень лекарственной чувствительности микобактерий туберкулеза определяется в соответствии с установленными критериями, которые зависят как от противотуберкулезной активности лекарственного препарата, так и его концентрации в очаге поражения, величины максимальной терапевтической дозы, фармакокинетики препарата и др.

Определение лекарственной чувствительности в настоящее время проводится бактериологическими методами — методом разведений на плотной питательной среде и методом разведений (или абсолютных концентраций) на жидких питательных средах. Имеется много модификаций обоих методов. В качестве унифицированного в России применяют рекомендованный Комитетом по химиотерапии ВОЗ метод определения лекарственной чувствительности микобактерий на плотной среде Левенштейна — Йенсена (без крахмала), в которую перед свертыванием добавляют различные концентрации препаратов. Минимальный набор состоит из 2-3 пробирок с разными концентрациями каждого из используемых в данной клинике препаратов, одной контрольной пробирки со средой без препарата.

Этот метод достаточно точен. Он позволяет применять патологический материал, содержащий любое количество микобактерий, поскольку для определения лекарственной чувствительности используются микобактерии, предварительно выделенные из патологического материала.

Поскольку сроки выделения возбудителя на питательных средах составляют не менее 1-1,5 мес, результаты определения лекарственной чувствительности указанным методом можно получить не ранее чем через 2-2,5 мес после забора материала. В этом заключается один из основных недостатков метода. Описанный метод определения лекарственной чувствительности микобактерий после выделения их чистой культуры получил название непрямого метода.

При массивном бактериовыделении (не менее 1-5 микобактерий в каждом поле зрения) применяют прямое определение лекарственной чувствительности при выделении возбудителя непосредственно из патологического материала. Для этого используют метод глубинного посева и метод культивирования на стеклах в жидких питательных средах. Эти методы более трудоемки, требуют дополнительного приготовления мазков, окраски и микроскопирования последних и, кроме того, менее точны, так как невозможно дозировать засев микобактерий. Однако результаты можно получить в более короткие сроки (через 12 дней). Практикуется также прямое определение лекарственной устойчивости на плотных средах, в этом случае результаты можно получить через 3 нед.

Лекарственно-чувствительные штаммы дают рост на средах с препаратами в пределах определенной концентрации, различной для каждого препарата. Штаммы, которые растут при соответственно более высоком содержании этих препаратов в питательной среде, относят к лекарственно-устойчивым. Устойчивость определяют по наличию макроскопически видимого роста на плотных и микроскопического роста — на жидких средах.

Устойчивость данного штамма в целом выражается той максимальной концентрацией препарата (количество микрограмм в 1 мл питательной среды), при которой еще наблюдается размножение микобактерий (по числу макроколоний при посеве на плотные среды и микроколоний при посеве на жидкие среды). Лекарственно-устойчивые микроорганизмы способны размножаться при таком содержании препарата в среде, которое оказывает на чувствительные особи бактериостатическое или бактерицидное воздействие. При определении лекарственной устойчивости микобактерий на плотных средах культура считается чувствительной к той концентрации препарата, которая содержится в среде, если число колоний микобактерий, выросших на одной пробирке с препаратом, не превышает 20. Только при наличии более 20 колоний культура расценивается как устойчивая.

Для различных препаратов установлена определенная предельная концентрация, при которой еще наблюдается размножение чувствительных к этому препарату микобактерий. Границей, или критерием устойчивости, называют те первые концентрации препарата в питательной среде, выраженные в микрограммах на 1 мл, при которых начинают размножаться устойчивые особи. Для плотной среды Левенштейна — Йенсена установлены следующие концентрации (мкг/мл): стрептомицин — 5; изониазид — 1; этионамид — 30; протионамид — 30; циклосерин — 50; канамицин — 30; флоримицин (биомицин) — 30; тиоацетазон (тибон) — 2; этамбутол — 2; рифампицин — 20.

Наряду с анализом лекарственной чувствительности все выделенные при посеве медленно растущие штаммы микобактерий подлежат первичной идентификации для определения их видовой принадлежности (М. tuberculosis, М. bovis, М. africanum, М. microti), так как принадлежность возбудителя к тому или иному виду существенно влияет на тактику химиотерапии, прогноз заболевания и др. Одним из основных лабораторных тестов, позволяющих дифференцировать М. tuberculosis и М. bovis и микобактерии всех других видов, служит ниациновый тест. Он основан на уникальной способности микобактерий человеческого типа синтезировать ниацин (никотиновую кислоту) в значительно больших количествах, чем микобактерии бычьего типа и нетуберкулезные микобактерии.

В случае выделения нетуберкулезных (атипичных) микобактерий, как медленно, так и быстро растущих, необходимо прежде всего правильно оценить их роль в заболевании, а затем идентифицировать их. Для установления диагноза микобактериоза надо многократно повторно выделить один и тот же вид микобактерий. Все туберкулезные микобактерии подлежат специальному изучению с помощью бактериологических и биохимических методов идентификации.

Биологическая проба. При отрицательных результатах бактериоскопии и посева материала, исследуемого на микобактерии туберкулеза, если все же подозревается туберкулез, ставят опыты на животных (так называемая биологическая проба). Это наиболее чувствительный метод выявления возбудителя туберкулеза. Самым чувствительным к туберкулезной инфекции лабораторным животным является морская свинка. Считается, что заражение морской свинки позволяет диагностировать туберкулез даже при наличии в материале, использованном для заражения, 1-5 микробных клеток.

Биологический метод широко применяется в диагностике туберкулеза со времени открытия возбудителя этой инфекции. Он не потерял своей ценности и в настоящее время. Более того, сейчас этот метод с успехом применяется для выявления не только типичных неизмененных, но и разнообразных биологически измененных форм возбудителя, в частности L-трансформированных и фильтрующихся форм. Кроме того, этот метод является основным при определении видовой принадлежности микобактерий, их вирулентности, изучении патогенности атипичных культур. Он широко используется для воспроизведения туберкулеза отдельных органов, исследования аллергических реакций, иммунитета и эффективности химиотерапии при туберкулезе.

При любом методе заражения морских свинок микобактериями туберкулеза у животных развивается генерализованный туберкулезный процесс, заканчивающийся гибелью. Однако следует иметь в виду, что возбудители туберкулеза, устойчивые к препаратам изоникотиновой кислоты, вследствие снижения или потери вирулентности могут не вызывать заболевание у морских свинок и дать отрицательные результаты биологической пробы при одновременном наличии роста на питательных средах при посеве. Это обстоятельство диктует необходимость дифференцированного подхода к результатам биологической пробы и одновременного использования метода посева при проведении заражения животного в диагностических целях.

Для повышения частоты обнаружения микобактерий туберкулеза в патологическом материале многие авторы используют, помимо подкожного, интратестикулярное заражение. При этом в патологическом материале удается чаще выявлять изониазидоустойчивые слабовирулентные микобактерии. Кроме того, для повышения чувствительности биологического метода рекомендуется искусственно снижать естественную резистентность морских свинок ежедневным введением больших доз кортизона (12,5 мг), что позволяет повысить результативность биологической пробы на 15-29% (по данным разных исследователей).

Наконец, результативность биологической пробы можно повысить, применяя метод последовательных биологических пассажей. Для этого заражение каждой последующей морской свинки производится гомогенатом органов от предыдущего животного, использованного в биологической пробе. По мере увеличения числа пассажей нарастает выраженность специфических изменений в органах. Следует подчеркнуть, что особую ценность биологическая проба представляет для диагностического исследования олигобациллярного материала.

Перед заражением морским свинкам с массой 200-250 г. ставят реакцию Манту, вводя 0,02 мл альттуберкулина Коха внутрикожно в наружную поверхность бедра, освобожденную от волосяного покрова; контроль — введение такого же количества бульона в другую лапку. При отрицательной реакции через 48 ч свинку можно брать в опыт. Для заражения в диагностических целях можно использовать различный патологический материал: мокроту, мочу, промывные воды, отделяемое ран и др.

Исследуемый материал обычно обрабатывают 3% раствором серной кислоты так же, как и для посева. Затем осадок 2 или (лучше) 3 раза отмывают стерильным изотоническим раствором NaCl и центрифугируют. Такое отмывание является обязательной процедурой, поскольку при попадании кислоты животному под кожу может развиться некроз. К отмытому осадку добавляют изотонический раствор NaCl и вводят эту смесь под кожу правой паховой области.

За свинками проводят систематическое наблюдение, проверяя появление местного инфильтрата в месте введения материала, изъязвление этого инфильтрата, состояние регионарных лимфатических узлов и места введения материала; повторно ставят реакцию Манту. То же повторяют через 6 нед и далее. При положительных туберкулиновых пробах и наличии местных изменений свинок забивают через 1-1,5 мес, при отсутствии признаков развивающегося туберкулеза — через 3 мес. Туберкулиновые пробы при наличии туберкулезного процесса становятся положительными через 2 нед — 1 мес после заражения.

На вскрытии свинок, погибших от туберкулеза, наблюдается картина генерализованного туберкулеза. Если при заражении в материале были слабовирулентные микобактерии туберкулеза, то развитие процесса может ограничиться увеличением лимфатических узлов и единичными очажками в органах. Во время вскрытия делают мазки-отпечатки из органов для бактериоскопических исследований. Кроме того, кусочки лимфатических узлов, селезенки, печени и легких вырезают стерильным инструментом, помещают в стерильную ступку, гомогенизируют и засевают на плотные питательные среды. Посевы производят обязательно при отсутствии в органах макроскопически видимых изменений туберкулезного характера. Кроме того, в сомнительных случаях проводят гистологическое исследование тканей.

Для оценки распространенности и характера туберкулезного поражения у морских свинок предложено несколько схем учета макроскопических изменений в органах. Наибольшее распространение в нашей стране получили схемы, разработанные М. В. Триус и Ю. К. Вейсфейлером. По этим схемам специфические изменения в органах и лимфатических узлах оцениваются в зависимости от степени их выраженности плюсами, которые затем переводятся в цифровые показатели.

Микробиологическая диагностика L-трансформированных и фильтрующихся вариантов микобактерий. Все изложенное выше касается разнообразных методов выявления и идентификации классических бактериальных форм возбудителя туберкулеза, не учитывая многообразные формы, возникшие в результате морфологической, тинкториальной и биологической изменчивости микобактерий.

В настоящее время традиционные методы выделения микобактерий туберкулеза все меньше удовлетворяют нужды клиники, так как информативность микробиологических исследований явно недостаточна. Применяемые методы малоэффективны и не позволяют составить представление об истинном состоянии микобактериальной популяции, вегетирующей в организме больного. Это объясняется, с одной стороны, недостаточной чувствительностью ряда методов, а с другой (в значительно большей степени), тем, что большинство таких методов не позволяет выявить возбудитель, находящийся в L-трансформированном состоянии.

L-трансформация — закономерный этап жизненного цикла микобактерий. L-формы — это варианты бактерий с дефектом клеточной стенки. Им придают особое значение в патологии человека и животных в связи с их способностью длительно существовать в макроорганизме и реверсировать в исходный вид с восстановлением свойственной ему вирулентности. Возможность попеременного или одновременного существования возбудителя в бактериальной и L-форме не только значительно затрудняет диагностику, но и влияет на развитие эпидемического процесса, создавая ложное впечатление об абациллировании источников и стерилизации очагов инфекции.

Таким образом, результаты бактериологических исследований, рассчитанных на выделение только бактериальных форм возбудителя, не могут служить основанием для исключения туберкулезной инфекции и должны дополняться данными, полученными специальными методами, которые направлены на выявление L-форм микобактерий. Последние, как известно, являются закономерно существующей формой возбудителя при разных клинических проявлениях туберкулезного процесса, а также основной формой персистирования микобактерий.

Установлено, что L-трансформация микобактерий закономерна и при использовании специальных методов исследования она может быть выявлена. Из-за биологических особенностей L-форм, для которых характерны резко измененная морфология бактериальных клеток и сниженный метаболизм, выделение их требует специальных методов культивирования и идентификации. L-формы могут обнаруживаться в виде гигантских зернистых тел, скоплений различных по размеру, гомогенности и оптической плотности шаров, гранул, сферопластоподобных образований, светопреломляющих тел и др.

L-формы и близкие к ним варианты возбудителя туберкулеза характеризуются повышенной хрупкостью и требуют применения особых методов выделения и условий культивирования: щадящих методов обработки материала, элективных питательных сред, наличия наливных белков и осмотических стабилизаторов.

L-формы выделяются преимущественно у больных, недавно прекративших выделять бактериальные формы. У данного контингента больных с сохранившимися полостями деструкции и воспалительными изменениями в легочной ткани выделение L-форм продолжается еще в течение 3-4 мес и более после прекращения выделения бактериальных форм.

Таким образом, целенаправленные поиски L-форм микобактерий показаны у больных, не выделявших или прекративших выделять бактериальные формы, но имеющих явные клинические признаки активного туберкулезного процесса. К таким признакам относится наличие участков деструкции легочной ткани, каверн с неравномерно широкими стенками и с эволютивными воспалительными изменениями в окружающей легочной ткани.

Поиски L-форм микобактерий туберкулеза должны проводиться повторно, многократно, так как выделение их носит периодический характер. В настоящее время разработаны и применяются разнообразные методы микробиологической диагностики L-трансформированных вариантов: бактериоскопические, культуральные, биологические, серологические, иммунофлюоресцентные, гистологические.

Разработаны методические основы культурального выделения L-форм, сконструированы элективные питательные среды, предложены методы обработки материала, подобраны адекватные детергенты и осмотические стабилизаторы, разработана схема посева и контролей. Предложены методы окраски L-форм в чистой культуре и патологическом материале; разработаны стандартные и ускоренные методы реверсии и др. Все это позволяет выделять L-формы из разнообразного патологического материала и устанавливать их видовую специфичность.

Основные принципы выделения и идентификации L-форм изложены в методических рекомендациях «Выделение L-форм микобактерий туберкулеза из патологического материала» (М., 1984) и «Экспресс-индикация L-форм микобактерий туберкулеза методом иммунофлюоресценции» (Минск, 1981).

Исследованиями последних лет (А. Г. Хоменко, В. И. Голышевскан) установлено, что при многих клинических проявлениях туберкулеза (особенно на фоне длительной комбинированной химиотерапии) в организме больных и экспериментальных животных обнаруживаются и ультрамелкие формы возбудителя, проходящие через бактериальные фильтры. Частота обнаружения этих микроорганизмов варьирует в зависимости от формы процесса и особенно от лекарственного режима.

Для выделения ультрамелких форм разработаны культуральный и биологический методы. Основной принцип этих методов заключается в том, что исследованию подвергается материал, последовательно профильтрованный через мембранные фильтры с размером пор 0,65; 0,45 и 0,22 мкм. При этом исследуемый субстрат полностью очищается от бактериальных форм возбудителя, осколков микобактерий и других вариантов изменчивости, в материале остаются только фильтрующиеся формы. Полученный фильтрат засевают на специальные питательные среды или вводят морской свинке. Результаты оценивают по данным бактериоскопии мазков, приготовленных из культивированного фильтрата или в результате реверсии возбудителя в бактериальную форму.

1996 г

Метки
Bactec АБП Абсцесс Аллергия Альвеолиты Анализы БЦЖ Беременность Биопсия Бронхи Бронхит Бронхоаденит Бронхоблокация Бронхолитиаз Бронхоскопия Бронхоэктазы Брюшина ВИЧ Вакцинация Витамины Гастрит Гепатит Гипертония Глаза Глотка Гортань Дезинфекция Дети Диабет Диспансер Диссеминированный Желудок Закон Зубы Иммунитет Инфильтративный КУМ Кавернозный Казеозная пневмония Кисты Кишечник Классификация Кожа Коллапсотерапия Кости Кровь Курение ЛФК Лаборатория Лазер Лимфогрануломатоз Лимфоузлы МБТ МЛУ МСЭ Менингит Микобактериоз Микоз Микроскопия Миндалины Мокрота Мониторинг Моча Мочеполовой Наркомания Нервы и психика Обследование Озонирование Опухоль Очаг Очаговый ПТК ПЦР Паротит Патогенетические Первичный Перикардит Печень Питание Пищевод Плазмаферез Плеврит Пневмокониозы Пневмония Побочные Поджелудочная Пожилые Позвоночник Посев Почки Профилактика Пьянство Рак Режимы лечения Рентген Рот Санаторий Санбюллетень Саркоидоз Сердце Симптомы Стационар Суставы Трахея Туб. интоксикация Туберкулома Устойчивость ФВД Фиброзно-кавернозный ХНЗЛ Химиотерапия Хирургия ЦНС Цирротический Шок ЭКГ Эмпиема Эндоскопия Язва

Туберкулез в цифрах и фактах

Туберкулёз — это инфекционное заболевание, вызываемое микобактериями из группы Mycobacterium tuberculosis complex, или иначе — палочками Коха. Чахотка (от слова ...
Подробнее

Полезны ли медицинские маски

Австралийские ученые заявили, что тканевые медицинские повязки не защищают от вирусов и инфекций. Кроме того, использовать их в ситуациях, когда риск ...
Подробнее

Федеральные клинические рекомендации по диагностике и лечению туберкулеза органов дыхания с множественной и широкой лекарственной устойчивостью возбудителя

Васильева И. А    Эргешов А. Э. Множественная лекарственная устойчивость (МЛУ) микобактерий туберкулеза (МБТ)- это устойчивость возбудителя к сочетанию изониазида ...
Подробнее

Клинические рекомендации по диагностике и лечению туберкулеза органов дыхания у взрослых

Яблонский П. К. профессор,д.м.н. Васильева И. А. профессор, д.м.н Основными методами оценки эффективности химиотерапии являются микроскопические и культуральные исследования диагностического ...
Подробнее

Что собой представляет туберкулезный процесс?

Петр Савченко Не торопитесь сказать, что наука знает ответ на этот вопрос. Человек и так совершил много ошибок в спешке ...
Подробнее